
Exascale Conference: Performance Modeling
and Metrics Discussion

K. J. Roche
High Performance Computing Group, Pacific Northwest National Laboratory

October 2, 2012
Arlington, Virginia

Tuesday, October 2, 2012

• this talk is intended to start conversations and
describe the kinds of issues encountered in
DOE’s exascale performance modeling and
simulation work -- mostly observations, not a
research talk

Tuesday, October 2, 2012

• COMPLEXITY
• PROBLEMS
• ALGORITHMS
• MACHINES

S = S1 ^ S2 ^ ... ^ Sn

Asking questions, solving problems is recursive
process

Accepting a result means a related set of
conditions is satisfied

Measured time for machine M to generate the
language of the problem plus time to generate
the language of the result plus the time to
accept or reject the language of the result.

M
LP LR

M

accept

reject

M

Concepts: Solving Problems with Computers

algorithm, a Turing machine that always halts
decidable problems are posed as a recursive language
undecidable problems have no algorithms that accept the language of the problem and generate / accept or reject an answer
(Rice’s Theorem posits that non-trivial properties of r.e. languages are undecidable. Examples are emptiness, finiteness, regularity,
and context freedom.)

Tuesday, October 2, 2012

M

M

M

Lp

LR

accept

reject

• construct A, b given dim(A) dim(A)=dim(rank(1,A))=dim(rank(2,A))

• compute A=LU, solve Ly=b for y, solve Ux=y for x

• compute |A|inf , compute |x|2 , compute |b-Ax|2 ,
approximate ! (machine precision),

form "= |b-Ax|2 / (|A|inf * |x|2 * !) ;
if " ~ O(dim(A)) accept x, else reject x

Metrics (?) to Judge Platforms;
Extended Scope of Application Software

Q: How do the language of the problem and the accepted result relate to reality?
Requires analysis beyond software analysis above and distinguishes computational
science from system and library software development. Takes more time -needs
refinement phase of algorithms and metrics.

Metric: the distance between two points in some topological space

Example Problem: solving algebraically
determined systems of linear equations
numerically (Linpack TOP500, FLOPs)

Ex2: BFS(Graph500,TEPS)

Tuesday, October 2, 2012

Today can
compute:
(P1,A1,M1)

Want to
compute:
(P2,A2,M2)

Top Down Perspective : Application scientists / developers

limits:
• don’t really understand the problem, ??

• don’t have the right method / representation (A2: ??)

• capacity (|M| too simple) -too much complexity (|P2| >> |P1|)

• takes too long (T(P,A,M) big)
•fix it through software engineering and optimization
• expose parallelism to take advantage of existing computers

• need carefully defined measures of scientific progress, M

accept

reject

M
Lp

M
LR

how to get there?

Tuesday, October 2, 2012

Bottom Up Perspective :
How to Build a BIG, PROGRAMMABLE Computer
w/in a Constrained Power Envelope

what is the design of M?
what is the interface to M?

... too many issues to address in 10 minutes

Tuesday, October 2, 2012

Clear need for both generic and specific metrics / models
from both perspectives; also to connect the perspectives

Perpectives are different but events directly related
•hardware cannot generalize instruction and data miss rates
from application to application

•applications cannot safely generalize program execution
behavior from one architecture to another

SO, metrics are measures that help us reason about where
things stand, how changes impact our goals

• models allow us to reason about and identify new metrics
for existing infrastructure

•models also allow us to reason about and contemplate new
metrics in the absence of infrastructure, i.e. design

Tuesday, October 2, 2012

ASCR’s Annual OMB Software Metric from FY04-FY11

•Game: satisfy the following efficiency measure

•vertical interrogation of DOE!s computing investments; generate complete

before and after versions of cutting-edge production science software on

cutting-edge computing platforms with reproducible, quantifiable enhancements

•position important (ie ASCAC selection process, usually from SciDAC or

INCITE) software applications to solve complex problems on the most

massively parallel open computing systems today

•over 33 major software applications enhanced, i.e. 4 went on to win or be

finalists in G. Bell prize, a couple of Nature or Science articles ensued; over

200M CPU Hours for correction + problem execution analysis

(SC GG 3.1/2.5.2) Improve computational science capabilities, defined

as the average annual percentage increase in the computational

effectiveness (either by simulating the same problem in less time

or simulating a larger problem in the same time) of a subset of

application codes. Efficiency measure: X%

Tuesday, October 2, 2012

ASCR OMB Software Benchmark Trends (FY04 - FY11)

climate research 4

condensed matter 4

fusion 5

high energy physics 3

nuclear 2

subsurface modeling 2

astrophysics 2

combustion chemistry 4

bioinformatics 1

math, data analytics 2

molecular dynamics,
electronic structure

3

nuclear energy 1

Total 33

ref. my DOE ASCAC talks
or contact me / DOE ASCR HQ for more info

Tuesday, October 2, 2012

•the effort has made quantifiable advances to DOE ASCR!s missions
•state of the art approaches -> effective use of LCF resources
•determine near term feasibility of application studies

•focal points
•new / improve problem capabilities, efficiency, weak and strong scaling performance
enhancements
•determine new metrics, evaluate measuring techniques and tools
•identify deficiencies and provide solutions

•broad range of activities w/ over 200 collaborators
•sharpen / validate tools through use in production science scenarios
•pinpoint compiler related uses / misuses
•data formats and compositions in memory, in network, in file system
•i/o algorithms for massive data sets, small data sets in massively parallel envs
•evaluate algorithms / numerics / physical representations
•architectural adjustments

•demonstrate leadership for application developers / programmers

**see November 2011 ASCAC talk for specific examples, or any of the annual reports on record at ASCR.

Tuesday, October 2, 2012

Measurements

•application specific measures / metrics (see bonus for examples)

•machine events

-clear dependence on tools / hardware support to monitor hardware components

activated during program execution

--cycle count, disk accesses, floating point operation counts, instructions issued

and retired, L2 data cache misses, maximum memory set size, number of

loads / stores etc.

•derived measures

-efficiency, cycles per instruction (CPI) or floating point operations retired per

second (FLOPs)

-computational costs, CPU Hours (relates execution time to processing

elements), etc.

•USE TOOLS to pinpoint insufficient parallelism, lock contention, and parallel
overheads in threading and synchronization strategies

Tuesday, October 2, 2012

Strong Scaling Weak Scaling Improve Efficiency

Machine
Events

Q2 Q4

INS 2.147E+15 2.1130E+15

FP_OP 5.896E+14 5.8947E+14

PEs 5632 11264

Time[s] 121.252233 57.222988

INS:
2113046508030116 /
2146627269408190 = .9843

FP_OP:
589469277576687 /
589624961638025 = .9997

PEs: 11264 / 5632 = 2

Time[s]:
57.222988 / 121.252233 = .472

Machine
Events

Q2 Q4

INS 5.18E+17 1.93E+18

FP_OP 4.63E+17 1.81E+18

PEs 7808 31232

Time[s] 25339 23791

INS: 3.72

FP_OP: 3.92

PEs: 4

Time[s]: .938

NB: k= T(Q4)*PEs(Q4)/
T(Q2)*PEs(Q2) ~ 3.756

Machine
Events

Q2 Q4

INS 3.16E+12 4.37E+11

FP_OP 5.50E+11 5.53E+11

PEs 1 1

L2DCM 823458808 34722900

Time[s] 826.494142 79.414198

INS: 0.1381 (7.239x)

FP_OP: 1.0053 (0.99475x)

PEs: 1

L2DCM: 0.0422 (23.715x)

Time[s]: 0.0961 (10.407x)

Enhancement Modes

•performance (improve efficiency, scalability - weak or strong)

-data structures / discretizations, algorithms, libraries, language enhancements, compilers

•scientific (better accuracy, improved predictive power)

-physical models, the problem representation, validity of inputs, and correctness of computed results

Tuesday, October 2, 2012

Algorithm, machine strong scaling :
 Q4 problem := Q2 problem
 Q4 algorithm := Q2 algorithm
 Q4 machine ~ k * Q2 machine
 Q4 time ~ 1/k * Q2 time

Algorithm enhancements, performance
optimizations:

 Q4 problem := Q2 problem
 Q4 algorithm ~ enhanced Q2 algorithm
 Q4 machine := Q2 machine
 Q4 time ~ 1/k * Q2 time

*Could consider other variations: algorithm and machine
 are varied to achieve reduction of compute time

“simulating the same
problem in less time”

Algorithm, machine weak scaling (100%):
 Q4 problem ~ k * Q2 problem
 Q4 algorithm := Q2 algorithm
 Q4 machine ~ k * Q2 machine
 Q4 time := Q2 time

Algorithm enhancements, performance
optimizations:

 Q4 problem ~ k * Q2 problem
 Q4 algorithm ~ enhanced Q2 algorithm
 Q4 machine := Q2 machine
 Q4 time := Q2 time

*Could consider other variations: problem, algorithm and
 the machine are varied to achieve fixed time assertion

“simulating a larger
problem in same time”

Computational Efficiency
• Total elapsed time to execute a problem instance with a specific software instance
(algorithm) on a machine instance

• Parallel
• e(n,p) := Tseq (n) / (p * T(n,p))

weighted:
(t*nPEs/DOF)_b/(t*nPEs/DOF)_e

Tuesday, October 2, 2012

From the QCD community : test sm, predict ckm me, qgp thermal studies

Metrics:
Science cases:

Tunable parameters:

1.! Efficiency of

Dirac inverter
(multiply a complex

3d matrix w/ a 3d
vector w/accumulation)

2.Computation of fermion
force term (s)

3.Evolution of trajectories

w/ MC (s)

4.Dollars per flop

•!3 Green’s functions:

Wilson, domain wall,
Clover (Asqtad in MILC)

•!Size of the sub-lattice, V_0

•!Number of processors, N_p

(N_p := lattice size / V_0)

•!Parameters

•! Horizontal resolution : T85 spectral truncation (128x256)

•! Number of vertical levels: 26

•! Number of advected constituents: 3

•! Stable timestep: 10 min

•! Output interval: 1 month

•! CCSM CVS tag: cam3.0.19 vs cam3.2.19

CCSM CAM study metric details

•! Application Based Observables / Metrics

•! Throughput: Simulated years per wall clock day : YPD

•! Average time (sec) in dynamics per day: dynpkg

•! Average time (sec) in physics/chemistry per day: physics

•! Average time (sec) in land model per day: land

•! Average time (sec) in dynamics- physics data transpose per day: dp

•! Average time (sec) in atm-land communication per day: cl2ck

•! Average time (sec) to simulate a day: stepon

•ScalaBLAST, time / query / PE

•DCA/QMC, time / Green function
update / slice

•LS3DF, time / DOF / SCF iteration

•LAMMPS, time / pairwise force / atom

•Omega 3P, time / eigenmode / PE

•CCSM, simulated years / wall clock day

•VH-1, time / zone update / PE

•NCSM MC, time / nucleon / shell /
sample / img step

•ENZO, time / time step (depth) / PE

• VisIt, image construction / display time

•RAPTOR, time / cell / time step

•XGC1, time / time step / particle

•DCA++, time / disorder configuration

•PFLOTRAN, (time / DOF) / PE

•GTC-s, # particles / (time / time step)

•CHIMERA, time / subcycled hydro step

•S3D, time / DOF / time step / PE

•MADNESS, time / reconstruction
(precision)

•Denovo, time / transport step /
unknown (cells,angles,moments,groups)

Tuesday, October 2, 2012

1) System power -primary constraint (PUI, facility / total)

2) Memory bandwidth and capacity are not keeping pace

3) Concurrency 1000X increase in-node

4) Processor open question

5) Programming model compilers will not hide this

6) Algorithms need to minimize data movement, not flops

7) I/O bandwidth not on pace with machine speed

8) Reliability and resiliency

9) Bisection bandwidth limited by cost and energy

Performance is Limited by ...

ref. ASCR exascale mtg

Tuesday, October 2, 2012

Need metrics to quantify the data related costs on and across nodes

-refine performance measures for data movement and access costs as these dominate

over floating point costs

• bandwidth, the number of cycles a core waits because the bus is not ready; as the measure gets large, it

indicates that the bus is in high demand and loads or stores involving main memory will take longer

-provides means to reason about performance costs versus (bisection) bandwidth scaling (i.e. increased node

counts)

• locality, the ratio of the peak versus measured capacity of each memory level (on/off chip) divided by access

time in cycles

•i.e. consider ratio of gather and scatter costs in loops (A. Snavely, exascale planning meeting)

ref. ASCR exascale mtg

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 [

s
]

Dimension

CUDA BLAS (cublas) Square Matrix Multiplication
 TitanDev (AMD Interlagos + NVIDIA Fermi)

CUDA
zgemm_

CUDA [fp_op/s]
zgemm_ [fp_op/s]

pzgemm_

1

Tuesday, October 2, 2012

Need extensions that relate performance to power; lead to novel optimization ideas

-extension of existing metrics to reason about power and performance tradeoffs, energy driven
optimizations (i.e. DVFS)

-number of floating point operations per Watt (floating point dominated)

-cost of loads or stores in bytes per Watt (data ops dominated)

-metric guided optimizations to simultaneously minimize power consumption and time to

solution (IBM Zurich study)
-computational cost ~ f(time to solution) * energy

-f constant, cost per execution event in Joules

-f linear, cost provides insight about appropriateness of hardware platform for application

-demand tools for power measurements
-memory (29%), network (29%), floating point unit (16%)) (distribution of power in HPC hardware (Kogge))

ref. ASCR exascale mtg

-relate cycle costs in memory

refs to energy in Joules

Tuesday, October 2, 2012

Need (?) Accurate, Scalable Tools at Thread Level

1 PE, 4 nt / PE

Group / Function / Thread (max)

===========================

Total

Time% 100.0%

Time 12.213947 secs

TOT_INS

1037.779M/sec

10063040357 instr

FP_INS

222.330M/sec

2155872263 ops

TOT_CYC

9.697 secs

21332826724 cycles

User time (approx) 100.0% Time

12.214 secs

26870760748 cycles

(2154299392)

THY

Tuesday, October 2, 2012

Need (?) Accurate, Scalable Memory Tools

i.e. detect memory leaks
•probe allocation points in calling

context trees

•intercept every allocate and free

•mark the memory with the call

path in which it was allocated,

match the free back to the

allocation point

•what about programs that are killed

by the O/S or othe faults?

•need to log data prior to

allocation to detect when a

process is killed from external

force

Tuesday, October 2, 2012

Need algorithms that Improve {ins,flop(s)} / byte (and don!t compromise

accuracy or performance)

•J.J.M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem, Numer. Math. 36,

177-195 (1981)

•F. Tisseur and J.J. Dongarra, Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal

Eigenvalue Problem on Distributed Memory Architectures, lawn132 (1998)

Tuesday, October 2, 2012

Mixed Precision Solvers -faster,
controlled accuracy

Reliable Updates (Sleijpen and Van der Worst 1996)
• Iterated residual diverges from true residual
• Occasionally replace iterated residual with true residual
• Also use second accumulator for solution vector

Single-precision can be used to find double-precision result
• GPU kernel is still bandwidth bound
• Use half precision for inner solve? ref. M. Clark, NVIDIA

my PD, Saul Cohen -multigrid

Require solver tolerance beyond limit of single precision
• DP is at least 2X slower
• Use iterative refinement
Double precision done can be done on CPU or GPU
Disadvantage is each new single precision solve is a
restart

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 5000 10000 15000 20000 25000 30000 35000

|A
z
-b

|

n=dim(A)

Numerical Error |b-Az| / |A|*|z|*eps
 TitanDev (AMD Interlagos + NVIDIA Fermi)

1 PE
PEs -fast

gpu
gpu(float)

Tuesday, October 2, 2012

Need measures for detecting, mitigating, recovering from failures

• fail / continue
• hard / soft faults

• resiliency must go
beyond check point /
restart

•algorithm based
fault tolerance

COSTS
/ TRADEOFFS ?

have to
go beyond

single
failure

ref P. Raghavan’s work

Tuesday, October 2, 2012

Need measures for I/O operations for applications

Parameters set in the file system related to

but independent from the problem parameters:

• Number of OSTs
1, 2, 4, 8, 16, 32

• Stripe size in BYTEs
1 MB, 2 MB, 4MB, 8 MB, 16 MB

• access pattern (round robin)

• Number of I/O PEs for spatial decomposition
kio ~ 1, 2, 3, 4, 6, 8

• Total number of I/O PEs is kio * nfld
since nfld =151, 151, 302, 453, 604, 906, 1208

Tuesday, October 2, 2012

Tuesday, October 2, 2012

Apps Are Not Usually Dominated by FLOPs

Application 1 2 3 4 5 6 7 8

Instructions
Retired

1.99E+15 8.69E+17 1.86E+19 2.45E+18 1.24E+16 7.26E+16 8.29E+18 2.67E+18

Floating Point
Ops

3.52E+11 1.27E+15 1.95E+18 2.28E+18 6.16E+15 4.15E+15 3.27E+17 1.44E+18

INS / FP_OP 5.64E+03 6.84E+02 9.56 1.08 2.02 17.5 25.3 1.85

REFERENCE FLOATING POINT INTENSE PROBLEM :: Dense Matrix Matrix Multiplication
C <--- a A B + b C :: OPERATIONAL COMPLEXITY : A[m,n] , B[n,p] , C[m,p] :: [8mpn + 13mp] FLOP
E.g. m=n=p=1024 ---> 8603566080 FLOP , measure 8639217664

!"

!##"

!####"

!######"

!########"

!$%!#"

!$%!&"

!$%!'"

!#&'" &#'(" '#)*" (+!)$%#," !+*'$%#'"

!"

#"

$%&"'%()*+,"-.,+/0"123456,77"

!-."/01"

!2."32452"

*-."/01"

*-."32452"

(-."/01"

(-."32452"
!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(!$%" $!%'" %!)&" '#()*+!," (#&%*+!%"

!"
#
$%
&'
()
*
#
$!
+!
,-
.
/
-
!!

0!

12#345!0*65!789:35;;79!

("-./0122"

&"-./012212"

'"-./012212"

Tuesday, October 2, 2012

Memory Wall Always There ...

y = ! x + y :
3 loads, 1 store
(more expensive than FP_OPs by a long shot)
2 floating point operations (maybe 1) on 3 operands

eg, double precision on the FY10 target platform:
(3 operands / 2 flop) * (8 bytes / operand) * 6 core * 4 (flop / cyc /core) * 2.6e9(cyc/sec) ~125 GBps

... We don’t have this and to get it is $$$... how to achieve Sustainability??

BLAS 1: O(n) operations on O(n) operands
BLAS 2: O(n**2) operations on O(n**2) operands
BLAS 3: O(n**3) operations on O(n**2) operands

Computation: Theoretical peak: (# cpu cores) * (flops / cycle / core) * (cycles / second)

Memory: Theoretical peak: (bus width) * (bus speed)

Tuesday, October 2, 2012

Memory Issues

CPU waiting for memory hierarchy is bottom line of
idle time

•memory latency
•miss rates

•instruction stalls
•branch misprediction
•unresolved data dependencies

O/S stall times are substantial cost -not easily influenced
•misses
•coping with interference from the application

•write references: how big should the write buffer
be + queuing model

Tuesday, October 2, 2012

Memory Measurements

•first touches are expensive
•misses lead to repeated first touches
•repeated dynamic allocation / free lead to first
touches

•costs can be measured
accesses / second (access rate)

x
N_{fractional miss ratio} / access

x
bytes / miss

:= bytes / second

• but, to be accurate requires average memory access
times over the duration of program execution
•a program’s locality behavior is not constant during
execution and is basically unique

Tuesday, October 2, 2012

DRAM COSTS: Power = Capacity * Voltage^2 * Frequency

Today’s Memories ...
• 10^9 cells

• cell capacitance < femto-farad

• resistance O(tera-ohms)

Refresh Cycles ~ 64ms
• leakage

• reading drains the charge (read + recharge)

• stall cycle on bus > 11 cpu cycles

Faster memory
• lower voltage --> decreases stability,

• increase frequency --> $$$ as arrays get large

•(i.e. more addressable memory) and voltage is
 increased to assure stability ref. Drepper, What every Programmer Should Know about Memory

DRAM

C, capacitor, keeps cell state

M, transistor, controls access to cell state

read the state of the cell the access line AL is raised

-causes a current to flow on the data line DL or not

write to the cell the data line DL is appropriately set and AL is

raised for a time long enough to charge or drain the capacitor

Tuesday, October 2, 2012

SDR (PC100) ~
DRAM cell array 100MHz
data transfer rate 100Mbps

DDR (PC1600) ~ moves 2X the data / clock (leading , falling)
add “I/O” buffer (2 bits on data line) adjacent to DRAM cell array
pull two adjacent column cells per access over 2 line data bus
100 MHz X 64 bit / data bus X 2 data bus lines = 1600 MBps

DDR2 (PC6400) ~ moves 4X the data / clock
double the bus frequency --> 2X bandwidth
double “I/O” buffer speed to match the bus
4 bits / clock on 4 line data bus
200MHz array; 400MHz bus; 800MHz FSB (effective freq)
200 MHz X 64 bit / data bus X 4 data bus lines = 6400 MBps
240 PIN addressing @ 1.8V

*each stall cycle on the memory bus is > 11 cpu cycles even in the best systems

Tuesday, October 2, 2012

Reduced latency – With vastly more responders built into HMC, we expect lower queue
delays and higher bank availability, which can provide a substantial system latency
reduction, which is especially attractive in network system architectures.

Increased bandwidth — A single HMC can provide more than 15x the performance of a
DDR3 module. Speed is increased by the very fast, innovative interface, unlike the slower
parallel interface used in current DRAM modules.

Power reductions — HMC is exponentially more efficient than current memory, using 70%
less energy per bit than DDR3.

Smaller physical systems — HMC’s stacked architecture uses nearly 90% less space
than today’s RDIMMs.

Pliable to multiple platforms — Logic-layer flexibility allows HMC to be tailored to multiple
platforms and applications.

HOW to DEAL
w/ new Technologies:
Micron Hybrid Memory Cube

Tuesday, October 2, 2012

Hierarchical caches to hide memory latencies

temporal locality
when a referenced resource is
referenced again sometime in the near
future

spatial locality
the chance of referencing a resource is
higher if a resource near it was just
referenced

Sample of Cache Discovery Test Results

cache test

1024
4096

16384
65536

262144
1.04858e+06

4.1943e+06
1.67772e+07

6.71089e+07
2.68435e+08

Size(B)

1
32

1024
32768

1.04858e+06
3.35544e+07

1.07374e+09

Stride(B)

20
40
60
80

100
120
140
160
180
200
220

Time(ns): r+w

Cache Coherency:

write-through, if cache line is written to, the processor also writes to main memory (at
all times cache and memory are synchronized)

write-back, cache line is marked dirty, write back is delayed to when cache line is being
evicted

>1 processor core is active (say in SMP) -all processors still have to see the same
memory content; have to exchange CL when needed -includes the MC

write-combining (ie on graphics cards)

Tuesday, October 2, 2012

• non-temporal writes, ie don’t cache the data writes since it won’t be used again

soon (i.e. n-tuple initialization)

• avoids reading cache line before write, avoids wasteful occupation of cache line and
time for write (memset()); does not evict useful data

• sfence() compiler set barriers

• loop unrolling , transposing matrices

• vectorization, 2,4,8 elements computed at the same time (SIMD) w/ multi-media
extensions to ISA

• reordering elements so that elements that are used together are stored together -pack
CL gaps w/ usable data (i.e. try to access structure elements in the order they are defined in
the structure)

• stack alignment, as the compiler generates code it actively aligns the stack inserting
gaps where needed ... is not necessarily optimal -if statically defined arrays, there are tools
that can improve the alignment; separating n-tuples may increase code complexity but
improve performance

• function inlining, may enable compiler or hand -tuned instruction pipeline optimization
(ie dead code elimination or value range propagation) ; especially true if a function is called
only once

• prefetching, hardware, tries to predict cache misses -with 4K page sizes this is a hard
problem and costly penalty if not well predicted; software (void _mm_prefetch(void *p,
enum _mm_hint h) --_MM_HINT_NTA -when data is evicted from L1d -don’t write it to
higher levels)

base /
node
focus

Use of Cache Inspired Basic Optimizations

Tuesday, October 2, 2012

•reduce synchronization overheads in parallel loops

•improve data locality

source: K. Kennedy, Rice

Tuesday, October 2, 2012

Going Beyond Instruction Level //ism to Loop Level

Optimally Maximizing Iteration-Level Loop Parallelism, D. Liu et al., IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

before, minimum

nonzero edge weight = 1

after, minimum nonzero

edge weight = 2

(re)moving
dependencies
decreases stalls,
decreases time

Tuesday, October 2, 2012

Challenge: Exploit Multi-core Hybrid / New Programming Methods

•MPI, processes spawn lightweight processes

•PGAS, partitioned global address space

•OpenMP threads, directive based, #include <omp.h> , omp_set_num_threads();

•POSIX threads, #include <pthread.h> , pthread_create();

•NVIDIA’s CUDA C, kernel execution (distinct executables)

•OpenCL, (abstract processing elements, compute units and devices -heterogeneous
systems)

•OpenACC, directive / pragma based, compiler creates kernel
 for execution on GPU (based on PGI Accelerator, M. Wolfe)

<-S> * <-d> cannot exceed the maximum number of CPUs per NUMA node

-lsize=12 MPI LWP DRAM
aprun -n <1-12> 1 - 12 1 2 * 2^30

aprun -n 2 -sn 2 -S 1 -d 6 2 1 - 6 12 * 2^30

aprun -n 1 -N 1 -d 16 1 1 - 12 24 * 2^30

X

X

X

X

X

X

X

X

X

X

X

X

X

no NUMA, 6 PEs/socket

NUMA + memory affinity

task based: Cilk for instance
other: Chapel

Tuesday, October 2, 2012

external memory control

cpu integrated memory control

Concurrency is when processes
or threads share hardware
resources

• ALU, adds, comparisons
• FPU, floating point operations
• L/S U, data, ins loads / stores
• Registers, fast memory; FPR, GPR, etc.
• PC, program counter -address in memory
of instruction that is executing (control flow,
fetch / decode in CPU)
• Memory interface, often L1 and L2
caches

CPU

other:
clock speed
buses
ISA (Intel x86 most popular, x86-64, ...)

improves performance for local data refs.
-still forced to communicate / orchestrate for non-local

Tuesday, October 2, 2012

X

X

X

X

X

X

X

X

X

X

X

X

X

no NUMA, 6 PEs/socket

NUMA + memory affinity

threaded

• cache contention, coherency

• atomicity

• memory bandwidth

• scheduling, pinning to hardware

make the FSB faster with increasing core count

Modified, local processor has

only copy of data and modifies it

Exclusive, CL is not modified

and not in another core!s cache

Shared, CL not modified -might

be in cache somewhere

Invalid, CL is invalid -not used

fork (create) / join overheads

*other processor’s activities are snooped on the address bus

Use of threads means coping with complicated issues

need tools
identification of relevant observables

Tuesday, October 2, 2012

ref. AMD, Numerical Algorithms Group Ltd.

•processor is 2 die + HT
•NUMA node is 2 processors

DATA flow

Tuesday, October 2, 2012

1/20th the power

++

•deeper memory,
heterogeneous hardware,
distinct binaries

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

T
im

e
[s

]

BYTEs

Memory Operation: Device-to-Host COPY
 TitanDev (AMD Interlagos + NVIDIA Tesla X2090)

memcpy
page-locked

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

B
Y

T
E

 /
 s

BYTEs

Memory Operation: Host-to-Device COPY
 TitanDev (AMD Interlagos + NVIDIA Tesla X2090)

memcpy
page-locked

 1

 10

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

m
e

m
c
p

 /
 p

a
g

e
 l
o

c
k
e

d

BYTEs

Memory Operation: COPY ratios
 TitanDev (AMD Interlagos + NVIDIA Tesla X2090)

host-device
device-host

Tuesday, October 2, 2012

Other Basic Examples:

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 5000 10000 15000 20000 25000 30000 35000

|A
z
-b

|

n=dim(A)

Numerical Error |b-Az| / |A|*|z|*eps
 TitanDev (AMD Interlagos + NVIDIA Fermi)

1 PE
PEs -fast

gpu
gpu(float)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5000 10000 15000 20000 25000 30000 35000

T
[s

]

n=dim(A)

Az=b Timings
 TitanDev (AMD Interlagos + NVIDIA Fermi)

1 PE
shmem(16 PEs)

PEs -fast
gpu

gpu(float)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5000 10000 15000 20000 25000 30000 35000

c
o
s
t(

$
)

n=dim(A)

Cost(Az=b)
 TitanDev (AMD Interlagos + NVIDIA Fermi)

1 PE
norm(1 PE)

PEs -fast
norm(PEs -fast)

gpu
norm(gpu)

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 [

s
]

Dimension

CUDA BLAS (cublas) Square Matrix Multiplication
 TitanDev (AMD Interlagos + NVIDIA Fermi)

CUDA
zgemm_

CUDA [fp_op/s]
zgemm_ [fp_op/s]

pzgemm_

Tuesday, October 2, 2012

[rochekj@clue-1]$ time ./xpt_pi 1

1 threads:
 pi = 3.14159 (3.141592653589970752)

 walltime:= 12.2492 [s]
 cpu:= 12.24 [s]
12.247u 0.000s 0:12.25 99.9% 0+0k 0+0io 0pf+0w

[rochekj@clue-1]$ time ./xpt_pi 2
2 threads:

 pi = 3.14159 (3.141592653590007167)
 walltime:= 6.16762 [s]
 cpu:= 12.27 [s]

12.272u 0.000s 0:06.16 199.1% 0+0k 0+0io 0pf+0w
[rochekj@clue-1]$ time ./xpt_pi 3

3 threads:
 pi = 3.14159 (3.141592653589914352)
 walltime:= 4.13565 [s]

 cpu:= 12.24 [s]
12.249u 0.000s 0:04.13 296.3% 0+0k 0+0io 0pf+0w

[rochekj@clue-1]$ time ./xpt_pi 4
4 threads:
 pi = 3.14159 (3.141592653589768247)

 walltime:= 3.09586 [s]
 cpu:= 12.22 [s]

12.226u 0.000s 0:03.09 395.4% 0+0k 0+0io 0pf+0w
[rochekj@clue-1]$ time ./xpt_pi 45
45 threads:

 pi = 3.14159 (3.141592653589790896)
 walltime:= 3.13209 [s]

 cpu:= 12.23 [s]
12.230u 0.000s 0:03.13 390.7% 0+0k 0+0io 0pf+0w

Multi-threaded versus GPU

i.e. apply operators F(derivatives)
to plane wave based functions

Pi = 3.1415926535 8979323846 2643383279…

Tuesday, October 2, 2012

Tuesday, October 2, 2012

Computing in the Future

• programming too complex today
• smarter machines -better human machine
interactions
• there are too many programming languages

• choose one and make it standard

• debugging means to fix errors in a program or
a machine

• need automatic debugging

bonus, from R. Feynman

Tuesday, October 2, 2012

Computing in the Future

•make physical components in 3D not simply
constrained to surface of a chip

•a device to detect defective elements
•automatically rewire to avoid defective
elements

bonus, from R. Feynman

Tuesday, October 2, 2012

parallel computers

energy consumption of machines
•could be made less with time varying voltage
•go slower but use less energy, allows for
increases in hardware units

physical limits of physical devices
•reversible logic circuitry, Bennett, Landauer,
Scientific American

•transistor can go forward and backward
•can recover input from output

Computing in the Future
bonus, from R. Feynman

Tuesday, October 2, 2012

